Perché seguire un corso in Machine Learning e come si struttura
Il Machine Learning (o apprendimento automatico) è un sottocampo dell’Intelligenza Artificiale, definito come la capacità di una macchina di imitare il comportamento umano intelligente. I sistemi di intelligenza artificiale vengono dunque utilizzati per eseguire compiti complessi in un modo simile a come gli esseri umani risolvono i problemi.
Attualmente, il ML viene utilizzato in numerosi ambiti della vita quotidiana: dai social media all’online banking, fino agli e-commerce.
Il Machine Learning Engineer, il programmatore specializzato nella gestione dei progetti di Machine Learning, è dunque una figura sempre più ambita, la quale si occupa di:
- supportare il team nel reperimento e nell’analisi dei dati necessari a sviluppare un modello di Machine Learning;
- sviluppare il modello di Machine Learning, basandosi sulle analisi effettuate;
- monitorare il flusso dei dati;
- intervenire qualora si verificassero cali delle performance.
Come diventare un Machine Learning Engineer
In genere, il Machine Learning Engineer è un laureato in Informatica, Matematica o Ingegneria informatica, perfezionatosi poi con un corso in Machine Learning.
I corsi di Machine Learning sono destinati sia ai programmatori e sviluppatori Web, intenzionati a diventare Machine Learning Engineer, sia ai professionisti di diversi ambiti che vogliono approfondire e ampliare le loro conoscenze.
Il corso consente di apprendere i principi fondamentali dell’Intelligenza Artificiale e del Machine Learning, e dunque l’insieme di tecniche, modelli e algoritmi mediante i quali le macchine imparano ad eseguire un compito autonomamente.
Tipicamente, un corso di Machine Learning è strutturato in differenti capitoli:
- acquisizione dei dati;
- analisi descrittiva per filtrare, raggruppare e trasformare i dati;
- processing, per pre-processare i dati al fine di eseguire il modello di Machine Learning;
- esecuzione di algoritmi di classificazione supervisionata e non supervisionata.
Phyd mette a disposizione dei suoi utenti numerosi corsi di Machine Learning. Frequentandoli, l’utente imparerà a conoscere le diverse tipologie di problemi che il Machine Learning riesce a risolvere, attraverso esempi di applicazioni concrete. Non solo: comprenderà anche la differenza che c’è tra problemi di regressione e classificazione, e imparerà le tecniche di costruzione dei principali algoritmi.
Perché scegliere un corso di Machine Learning online
L’apprendimento automatico è fondamentale per le aziende, in quanto consente loro di prevedere come i consumatori si comporteranno. Molti dei brand leader di oggi, come Facebook, Google e Uber, fanno dell’apprendimento automatico una parte centrale delle loro operazioni, e un elemento di differenziazione.
Numerosi sono i settori in cui il Machine Learning trova applicazione:
- produzione: manutenzione predittiva;
- vendita al dettaglio: upselling e marketing cross-channel;
- sanità: medicina di precisione;
- viaggi e ospitalità: dinamismo dei prezzi;
- servizi finanziari: analisi e regolamentazione del rischio;
- energia: ottimizzazione della domanda e dell’offerta di energia.
Con ogni settore che cerca di applicare a suo vantaggio l’Intelligenza Artificiale, lo studio dell’apprendimento automatico apre a numerosi sbocchi lavorativi. Le società di Machine Learning in cerca di ingegneri sono sempre di più, e la necessità di figure specializzate è sempre più ampia. Ogni azienda orientata al cliente sta cercando di adottare la tecnologia dell’apprendimento automatico e questo, soprattutto per i professionisti IT, si traduce in un’ulteriore possibilità di specializzazione.
Inoltre, il Machine Learning è strettamente connesso alla Data Science. Intraprendere una carriera nell’apprendimento automatico permette dunque di lavorare come Machine Learning Engineer o come Data Science Specialist. Diventare competenti in entrambi i campi rende i candidati ambiti dalle aziende, anche dalle più grandi.
0 commenti